39 research outputs found

    Motor ability in children treated for idiopathic clubfoot. A controlled pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study motor ability at seven years of age in children treated for idiopathic clubfoot and its relation to clubfoot laterality, foot status and the amount of surgery performed.</p> <p>Methods</p> <p>Twenty children (mean age 7.5 years, SD 3.2 months) from a consecutive birth cohort from our hospital catchments area (300.000 inhabitants from southern Sweden) were assessed with the Movement Assessment Battery for Children (MABC) and the Clubfoot Assessment Protocol (CAP).</p> <p>Results</p> <p>Compared to typically developing children an increased prevalence of motor impairment was found regarding both the total score for MABC (p < 0.05) and the subtest ABC-Ball skills (p < 0.05). No relationship was found between the child's actual foot status, laterality or the extent of foot surgery with the motor ability as measured with MABC. Only the CAP item "one-leg stand" correlated significantly with the MABC (rs = -0.53, p = 0.02).</p> <p>Conclusions</p> <p>Children with idiopathic clubfoot appear to have an increased risk of motor activity limitations and it is possible that other factors, independent of the clinical status, might be involved. The ability to keep balance on one leg may be a sufficient tool for determining which children in the orthopedic setting should be more thoroughly evaluated regarding their neuromotor functioning.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Measurement of the CKM angle Îł\gamma using B0→DK∗0B^0 \rightarrow D K^{*0} with D→KS0π+π−D \rightarrow K^0_S \pi^+ \pi^- decays

    Get PDF
    A model-dependent amplitude analysis of the decay B0→D(KS0π+π−)K∗0B^0\rightarrow D(K^0_S\pi^+\pi^-) K^{*0} is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0fb−1^{-1}, recorded at s=7\sqrt{s}=7 and 8TeV8 TeV by the LHCb experiment. The CP violation observables x±x_{\pm} and y±y_{\pm}, sensitive to the CKM angle Îł\gamma, are measured to be \begin{eqnarray*} x_- &=& -0.15 \pm 0.14 \pm 0.03 \pm 0.01, y_- &=& 0.25 \pm 0.15 \pm 0.06 \pm 0.01, x_+ &=& 0.05 \pm 0.24 \pm 0.04 \pm 0.01, y_+ &=& -0.65^{+0.24}_{-0.23} \pm 0.08 \pm 0.01, \end{eqnarray*} where the first uncertainties are statistical, the second systematic and the third arise from the uncertainty on the D→KS0π+π−D\rightarrow K^0_S \pi^+\pi^- amplitude model. These are the most precise measurements of these observables. They correspond to Îł=(80−22+21)∘\gamma=(80^{+21}_{-22})^{\circ} and rB0=0.39±0.13r_{B^0}=0.39\pm0.13, where rB0r_{B^0} is the magnitude of the ratio of the suppressed and favoured B0→DK+π−B^0\rightarrow D K^+ \pi^- decay amplitudes, in a KπK\pi mass region of ±50MeV\pm50 MeV around the K∗(892)0K^*(892)^0 mass and for an absolute value of the cosine of the K∗0K^{*0} decay angle larger than 0.40.4.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-007.htm

    Search for dark photons produced in 13 TeV pppp collisions

    Get PDF
    Searches are performed for both promptlike and long-lived dark photons, A 0 , produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A 0 → ÎŒ ĂŸ ÎŒ − decays and a data sample corresponding to an integrated luminosity of 1 . 6 fb − 1 collected with the LHCb detector. The promptlike A 0 search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A 0 search is restricted to the low-mass region 214 <m Ă° A 0 Þ < 350 MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the Îł – A 0 kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10 . 6 <m Ă° A 0 Þ < 70 GeV, and are comparable to the best existing limits for m Ă° A 0 Þ < 0 . 5 GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore